Top Scientists: CO2-Induced Warming Is “Weak” To Non-Existent For Greenland, Antarctica!
Top Scientists: CO2-Induced Warming Is “Weak” To Non-Existent For Greenland, Antarctica!
By Kenneth Richard We routinely read about “highest ever” Arctic ice sheet and sea ice melt rates in the Arctic. And about rapid, “faster-than-expected” melting of ice shelves in West Antarctica. And then, of course, we’re told that sea levels are rising at an accelerating rate — a catastrophically accelerating rate — due to the amplified warming at the poles, or “polar amplification”. The predominant cause of these alarming climate changes is almost invariably attributed to anthropogenic CO2 emissions, of course. These headlines are now commonplace, designed to grab our attention and stir us to action. But does the scientific evidence confirm that the polar climate is predominantly determined by the rise in anthropogenic CO2 emissions? A warming and cooling Arctic As documented in the below Climate4you graph (HadCRUT4), the Arctic climate has followed a roughly 60-year oscillation in the last century. Arctic (70-90 N) temperatures warmed during the 1920s to 1940s, cooled during the 1950s to1990s, and then returned to a warming trend from the mid-1990s onward. Source: Climate4You Back in the early 1990s, the failure of the Arctic region to warm during the previous ~40 years (1950-1990) despite the concomitant increase in anthropogenic CO2 emissions was puzzling to scientists publishing in the journal Nature (Kahl et al., 1993: “Absence of evidence for greenhouse warming over the Arctic Ocean in the past 40 years“), leading them to question whether the models for the CO2 greenhouse warming hypothesis could adequately explain climate fluctuations for the polar regions. Below are some excerpts from the Kahl et al. (1993) paper. In particular, we do not observe the large surface warming trends predicted by models; indeed, we detect significant surface cooling trends over the western Arctic Ocean during winter and autumn. This discrepancy suggests that present climate models do not adequately incorporate the physical processes that affect the polar regions. Conclusion Kahl et al., 1993: The lack of widespread significant warming trends leads us to conclude that there is no strong evidence to support model simulations of greenhouse warming over the Arctic Ocean for the period 1950-1990. Our results, combined with the inconsistent performance of model simulations of Arctic climate indicate a need to understand better the physical processes that affect polar regions, especially atmosphere-ice-ocean interactions, ocean heat transfer and cloud radiative effects“ A cooling Antarctica, Southern Ocean since 1979 In …